Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Pathol J ; 38(5): 541-549, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36221926

RESUMEN

Potato late blight caused by Phytophthora infestans is a destructive disease in Korea. To elucidate the genomic variation of the mitochondrial (mt) genome, we assembled its complete mt genome and compared its sequence among different haplotypes. The mt genome sequences of four Korean P. infestans isolates were revealed by Illumina HiSeq. The size of the circular mt genome of the four major genotypes, KR_1_A1, KR_2_A2, SIB-1, and US-11, was 39,872, 39,836, 39,872, and 39,840 bp, respectively. All genotypes contained the same 61 genes in the same order, comprising two RNA-encoding genes, 16 ribosomal genes, 25 transfer RNA, 17 genes encoding electron transport and ATP synthesis, 11 open reading frames of unknown function, and one protein import-related gene, tatC. The coding region comprised 91% of the genome, and GC content was 22.3%. The haplotypes were further analyzed based on sequence polymorphism at two hypervariable regions (HVRi), carrying a 2 kb insertion/deletion sequence, and HVRii, carrying 36 bp variable number tandem repeats (VNTRs). All four genotypes carried the 2 kb insertion/deletion sequence in HVRi, whereas HVRii had two VNTRs in KR_1_A1 and SIB-1 but three VNTRs in US-11 and KR_2_A2. Minimal spanning network and phylogenetic analysis based on 5,814 bp of mtDNA sequences from five loci, KR_1_A1 and SIB-1 were classified as IIa-6 haplotype, and isolates KR_1_A2 and US-11 as haplotypes IIa-5 and IIb-2, respectively. mtDNA sequences of KR_1_A1 and SIB-1 shared 100% sequence identity, and both were 99.9% similar to those of KR_2_A2 and US-11.

2.
Sci Rep ; 12(1): 10462, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729234

RESUMEN

Characterizing the genetic diversity and population structure of breeding materials is essential for breeding to improve crop plants. The potato is an important non-cereal food crop worldwide, but breeding potatoes remains challenging owing to their auto-tetraploidy and highly heterozygous genome. We evaluated the genetic structure of a 110-line Korean potato germplasm using the SolCAP 8303 single nucleotide polymorphism (SNP) Infinium array and compared it with potato clones from other countries to understand the genetic landscape of cultivated potatoes. Following the tetraploid model, we conducted population structure analysis, revealing three subpopulations represented by two Korean potato groups and one separate foreign potato group within 110 lines. When analyzing 393 global potato clones, country/region-specific genetic patterns were revealed. The Korean potato clones exhibited higher heterozygosity than those from Japan, the United States, and other potato landraces. We also employed integrated extended haplotype homozygosity (iHS) and cross-population extended haplotype homozygosity (XP-EHH) to identify selection signatures spanning candidate genes associated with biotic and abiotic stress tolerance. Based on the informativeness of SNPs for dosage genotyping calls, 10 highly informative SNPs discriminating all 393 potatoes were identified. Our results could help understanding a potato breeding history that reflects regional adaptations and distinct market demands.


Asunto(s)
Solanum tuberosum , Células Clonales , Variación Genética , Genotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Solanum tuberosum/genética , Tetraploidía , Estados Unidos
3.
Sci Rep ; 12(1): 8659, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606486

RESUMEN

Interspecific somatic hybridization has been performed in potato breeding experiments to increase plant resistance against biotic and abiotic stress conditions. We analyzed the mitochondrial and plastid genomes and 45S nuclear ribosomal DNA (45S rDNA) for the cultivated potato (S. tuberosum, St), wild potato (S. commersonii, Sc), and their somatic hybrid (StSc). Complex genome components and structure, such as the hybrid form of 45S rDNA in StSc, unique plastome in Sc, and recombinant mitogenome were identified. However, the mitogenome exhibited dynamic multipartite structures in both species as well as in the somatic hybrid. In St, the mitogenome is 756,058 bp and is composed of five subgenomes ranging from 297,014 to 49,171 bp. In Sc, it is 552,103 bp long and is composed of two sub-genomes of 338,427 and 213,676 bp length. StSc has 447,645 bp long mitogenome with two subgenomes of length 398,439 and 49,206 bp. The mitogenome structure exhibited dynamic recombination mediated by tandem repeats; however, it contained highly conserved genes in the three species. Among the 35 protein-coding genes of the StSc mitogenome, 21 were identical for all the three species, and 12 and 2 were unique in Sc and St, respectively. The recombinant mitogenome might be derived from homologous recombination between both species during somatic hybrid development.


Asunto(s)
Genoma Mitocondrial , Solanum tuberosum , Solanum , ADN Ribosómico , Genoma Mitocondrial/genética , Hibridación Genética , Fitomejoramiento , Solanum/genética , Solanum tuberosum/genética
4.
Mitochondrial DNA B Resour ; 3(1): 198-199, 2018 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33474116

RESUMEN

We report two complete mitochondrial genome sequences of a tuber-bearing wild potato species (Solanum commersonii). The genomes are circular DNA molecules with lengths of 213,676 bp and 338,427 bp containing 80 nonredundant genes totally, including 34 protein-coding genes, 25 hypothetical open reading frames, 18 tRNA genes, and 3 rRNA genes. Phylogenetic analysis using common protein-coding sequences confirmed that S. commersonii belongs to the Solanoideae subfamily in the Solanaceae family.

5.
Mitochondrial DNA B Resour ; 3(2): 755-757, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-33474312

RESUMEN

Solanum hougasii is a wild tuber-bearing species belonging to the family Solanaceae. The complete chloroplast genome of S. hougasii was constituted by de novo assembly, using a small amount of whole genome sequencing data. The chloroplast genome of S. hougasii was a circular DNA molecule with a length of 155,549 bp and consisted of 85,990 bp of large single copy, 18,373 bp of small single copy, and 25,593 bp of a pair of inverted repeat regions. A total of 158 genes were annotated, including 105 protein-coding genes, 45 tRNA genes, and eight rRNA genes. Maximum likelihood phylogenetic analysis with 25 Solanaceae species revealed that S. hougasii is most closely grouped with S. tuberosum.

6.
Mitochondrial DNA B Resour ; 2(2): 915-917, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33474034

RESUMEN

Solanum chacoense is a wild tuber-bearing species belonging to Solanaceae family. The chloroplast genome of the species was completed by de novo assembly using a small amount of whole genome sequencing data. The genome is the circular DNA molecule with a length of 155,532 bp containing 159 predicted genes totally, including 105 protein-coding, 45 tRNA and eight rRNA genes. Maximum-likelihood phylogenetic analysis with 26 species in Solanaceae revealed that S. chacoense is the most closely grouped with S. commersonii.

7.
Mitochondrial DNA B Resour ; 2(2): 781-782, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33490478

RESUMEN

Potato (Solanum tuberosum) from the Solanaceae is the fourth most important food crop worldwide. In this study, five complete mitochondrial genome sequences of S. tuberosum were characterized through de novo assembly of whole genome sequencing data. The resulting circular mitochondrial DNA molecules ranged from 49,171 bp to 297,014 bp in size and contained a total of 80 non-redundant genes, comprising 34 protein-coding genes, 24 hypothetical open reading frames, 19 tRNA genes, and 3 rRNA genes. Phylogenetic analysis using common protein-coding sequences confirmed that S. tuberosum belongs to the Solanoideae subfamily in the Solanaceae family.

8.
Plant Cell Rep ; 35(10): 2113-23, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27417695

RESUMEN

KEY MESSAGE: Chloroplast genome of Solanum commersonii and S olanum tuberosum were completely sequenced, and Indel markers were successfully applied to distinguish chlorotypes demonstrating the chloroplast genome was randomly distributed during protoplast fusion. Somatic hybridization has been widely employed for the introgression of resistance to several diseases from wild Solanum species to overcome sexual barriers in potato breeding. Solanum commersonii is a major resource used as a parent line in somatic hybridization to improve bacterial wilt resistance in interspecies transfer to cultivated potato (S. tuberosum). Here, we sequenced the complete chloroplast genomes of Lz3.2 (S. commersonii) and S. tuberosum (PT56), which were used to develop fusion products, then compared them with those of five members of the Solanaceae family, S. tuberosum, Capsicum annum, S. lycopersicum, S. bulbocastanum and S. nigrum and Coffea arabica as an out-group. We then developed Indel markers for application in chloroplast genotyping. The complete chloroplast genome of Lz3.2 is composed of 155,525 bp, which is larger than the PT56 genome with 155,296 bp. Gene content, order and orientation of the S. commersonii chloroplast genome were highly conserved with those of other Solanaceae species, and the phylogenetic tree revealed that S. commersonii is located within the same node of S. tuberosum. However, sequence alignment revealed nine Indels between S. commersonii and S. tuberosum in their chloroplast genomes, allowing two Indel markers to be developed. The markers could distinguish the two species and were successfully applied to chloroplast genotyping (chlorotype) in somatic hybrids and their progenies. The results obtained in this study confirmed the random distribution of the chloroplast genome during protoplast fusion and its maternal inheritance and can be applied to select proper plastid genotypes in potato breeding program.


Asunto(s)
Genoma del Cloroplasto , Hibridación Genética , Solanum/genética , Secuencia de Bases , Codón/genética , Cruzamientos Genéticos , ADN Circular/genética , Marcadores Genéticos , Variación Genética , Genotipo , Mutación INDEL/genética , Filogenia , Reacción en Cadena de la Polimerasa , Secuencias Repetidas en Tándem/genética
9.
C R Biol ; 339(5-6): 207-213, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27212605

RESUMEN

Potato (Solanum tuberosum L.) is generally considered to be sensitive to drought stress. Even short periods of water shortage can result in reduced tuber production and quality. We previously reported that transgenic potato plants expressing the sweet potato orange gene (IbOr) under the control of the stress-inducible SWPA2 promoter (referred to as SOR plants) showed increased tolerance to methyl viologen-mediated oxidative stress and high salinity, along with increased carotenoid contents. In this study, in an effort to improve the productivity and environmental stress tolerance of potato, we subjected transgenic potato plants expressing IbOr to water-deficient conditions in the greenhouse. The SOR plants exhibited increased tolerance to drought stress under greenhouse conditions. IbOr expression was associated with slightly negative phenotypes, including reduced tuber production. Controlling IbOr expression imparted the same degree of drought tolerance while ameliorating these negative phenotypic effects, leading to levels of tuber production similar to or better than those of wild-type plants under drought stress conditions. In particular, under drought stress, drought tolerance and the production of marketable tubers (over 80g) were improved in transgenic plants compared with non-transgenic plants. These results suggest that expressing the IbOr transgene can lead to significant gains in drought tolerance and tuber production in potato, thereby improving these agronomically important traits.


Asunto(s)
Sequías , Ipomoea batatas/genética , Ipomoea batatas/fisiología , Peroxidasas/genética , Pigmentación/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Solanum tuberosum/genética , Solanum tuberosum/fisiología , Ipomoea batatas/química , Fotosíntesis/genética , Tubérculos de la Planta/metabolismo , Plantas Comestibles , Reacción en Cadena de la Polimerasa , Solanum tuberosum/química , Estrés Fisiológico , Agua/análisis
10.
Mitochondrial DNA B Resour ; 1(1): 241-242, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33644350

RESUMEN

Solanum commersonii Dunal is a well-known wild potato belonging to Solanaceae family and commonly used as materials for somatic hybridization due to various biotic and abiotic stress resistances. The complete chloroplast genome of S. commersonii was constituted by de novo assembly using a small amount of whole genome sequencing data. The chloroplast genome of S. commersonii was 155 525 bp in length, consisted of 86 013 bp of large single copy, 18 366 bp of small single copy region and 25 573 bp of a pair of inverted repeats. A total of 113 genes were annotated including 79 protein-coding genes, 30 tRNA genes and four rRNA genes. Maximum likelihood phylogenetic analysis with 14 Solanaceae species revealed that S. commersonii is much closely related to Solanum tuberosum and S. bulbocastanum.

11.
Plant Physiol Biochem ; 49(8): 891-7, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21620719

RESUMEN

Oxidative stress is one of the major causative factors for injury to plants exposed to environmental stresses. Plants have developed diverse defense mechanisms for scavenging oxidative stress-inducing molecules. The antioxidative enzyme 2-cysteine peroxiredoxin (2-Cys Prx) removes peroxides and protects the photosynthetic membrane from oxidative damage. In this study, transgenic potato (Solanum tuberosum L. cv. Atlantic) expressing At2-Cys Prx under control of the oxidative stress-inducible SWPA2 promoter or enhanced CaMV 35S promoter (referred to as SP and EP plants, respectively) was generated using Agrobacterium-mediated transformation. The transgenic plants were tested for tolerance to stress. Following treatment with 3 µM methyl viologen (MV), leaf discs from SP and EP plants showed approximately 33 and 15% less damage than non-transformed (NT) plants. When 300 µM MV was sprayed onto whole plants, the photosynthetic activity of SP plants decreased by 25%, whereas that of NT plants decreased by 60%. In addition, SP plants showed enhanced tolerance to high temperature at 42 °C. After treatment at high temperature, the photosynthetic activity of SP plants decreased by about 7% compared to plants grown at 25 °C, whereas it declined by 31% in NT plants. These results indicate that transgenic potato can efficiently regulate oxidative stress from various environmental stresses via overexpression of At2-Cys Prx under control of the stress-inducible SWPA2 promoter.


Asunto(s)
Proteínas de Arabidopsis/genética , Estrés Oxidativo/genética , Peroxirredoxinas/genética , Solanum tuberosum/fisiología , Agrobacterium/genética , Regulación de la Expresión Génica de las Plantas , Calor , Paraquat/farmacología , Fotosíntesis , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Solanum tuberosum/efectos de los fármacos , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...